

HIT-1 / HIT-1 CE injection mortar

Anchor design (EN 1992-4) / Rods / Concrete

Injection mortar system

Hilti HIT-1 / HIT-1 CE

300 ml tube cartridge

Benefits

- Chemical injection fastening
- Two-component hybrid mortar
- Rapid curing
- Suitable for overhead fastenings
- Versatile and convenient handling
- Clean and simple in use
- Small edge distance and anchor spacing
- Always correct mixing ratio
- In-service temperatures:

Anchor rods: HAS-U HAS-U HDG HAS-U A4 HAS-U HCR (M8-M16)

Base material

Concrete (non-cracked)

Dry concrete

Wet concrete

Load conditions

Static/ quasi-static

Installation conditions

Hammer drilling

Variable embedment depth

Small edge distance and spacing

Other information

CE conformity

Approvals / certificates

Description	Authority / Laboratory	No. / date of issue
European Technical Assessment a)	TTIC, Prague	ETA-17/0005 / 2017-02-20

a) All data given in this section according to ETA-17/0005, issue 2017-02-20.

Static and quasi-static loading (for a single anchor)

All data in this section applies to

- Correct setting (See setting instruction)
- No edge distance and spacing influence
- Steel failure
- Base material thickness, as specified in the table
- Embedment depth as specified in the table
- Load values valid for holes drilled with TE rotary hammers in hammering mode
- Diamond coring is not permitted
- Concrete C 20/25, f_{ck,cube} = 25 N/mm²
- In-service temperature range I

(min. base material temperature -40°C, max. long/short term base material temperature: +24°C/+40°C)

Embedment depth a) and base material thickness

Anchor size		M8		M10		M12		M16						
Embedment depth b)	h _{ef}	[mm]	60	80	160	60	100	200	70	120	240	80	160	320
Base material thickness	h	[mm]	100	110	190	100	130	210	100	150	270	116	196	356

- a) The allowed range of embedment depth is shown in the setting details
- b) Recommended loads calculated for embedment depths $h_{ef} = h_{ef,min}$; $h_{ef} = 10d$; $h_{ef} = h_{ef,max} = 20d$

Recommended loads

Anchor size			M8		M10		M12		M16						
Non-cracked concrete															
Tension	HAS-U 5.8	Nrec	[kN]	4,2	5,6	8,7	5,2	8,7	13,8	7,3	12,6	20,1	9,6	19,1	37,4
Shear	HAS-U 5.8	V _{rec}	[kN]		5,2			8,3			12,0			22,4	

Materials

Mechanical properties

Anchor size				M8	M10	M12	M16
Nominal tensile strength	HAS-U 5.8		[N/mm²]	500	500	500	500
	HAS-U 8.8	τ.		800	800	800	800
	HAS-U-R	- t _{uk}		700	700	700	700
	HAS-U-HCR	_		800	800	800	800
No. 1 Letter and	HAS-U 5.8		[N/mm²]	400	400	400	400
	HAS-U 8.8	- 4.		640	640	640	640
Yield strength	HAS-U-R	- f _{yk}		450	450	450	450
	HAS-U-HCR	_		640	640	640	640
Stressed cross-section	HAS-U	As	[mm²]	36,6	58,0	84,3	157
Moment of resistance	HAS-U	W	[mm³]	31,2	62,3	109	277

Material quality for HAS-U

Part	Material					
Zinc coated steel						
Threaded rod, HAS-U 5.8 (HDG)	Strength class 5.8; Elongation at fracture A5 > 8% ductile Electroplated zinc coated ≥ 5µm; (HDG) hot dip galvanized ≥ 45 µm					
Threaded rod, HAS-U 8.8 (HDG)	Strength class 8.8; Elongation at fracture A5 > 12% ductile Electroplated zinc coated ≥ 5µm; (HDG) hot dip galvanized ≥ 45 µm					
Washer	Electroplated zinc coated ≥ 5 μm, hot dip galvanized ≥ 45 μm					
Nut	Strength class of nut adapted to strength class of threaded rod. Electroplated zinc coated ≥ 5μm, hot dip galvanized ≥ 45 μm					
Stainless Steel						
Threaded rod, HAS-U A4	Strength class 70 for M8-M16 Elongation at fracture A5 > 8% ductile Stainless steel 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362					
Washer	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014					
Nut	Stainless steel 1.4401, 1.4404, 1.4578, 1.4571, 1.4439, 1.4362 EN 10088-1:2014					
High corrosion resistant s	steel					
Threaded rod, HAS-U HCR	Strength class 80 for M8-M16 Elongation at fracture A5 > 8% ductile High corrosion resistance steel 1.4529; 1.4565;					
Washer	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014					
Nut	High corrosion resistant steel 1.4529, 1.4565 EN 10088-1:2014					

Setting information

Installation temperature range:

-5°C to +40°C

Service temperature range

Hilti HIT-1 / HIT-1 CE injection mortar may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

Temperature range	Base material temperature	Maximum long term base material temperature	Maximum short term base material temperature	
Temperature range I	-40 °C to +40 °C	+24 °C	+40 °C	
Temperature range II	-40 °C to +80 °C	+50 °C	+80 °C	

Maximum short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Maximum long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.

Working time and curing time a):

Temperature of the base material	Maximum working time	Minimum curing time
T _{BM}	t _{work}	t _{cure}
-5°C ≤ T _{BM} < 0°C	1,5 h	6 h
0°C ≤ T _{BM} < 5°C	45 min	3 h
5°C ≤ T _{BM} < 10°C	25 min	2 h
10°C ≤ T _{BM} < 15°C	20 min	100 min
15°C ≤ T _{BM} < 20°C	15 min	80 min
20°C ≤ T _{BM} < 30°C	6 min	45 min
30°C ≤ T _{BM} < 34°C	4 min	25 min
35°C ≤ T _{BM} < 40°C	2 min	20 min

a) The curing time data are valid for dry base material only. In wet base material the curing times must be doubled

Setting details

Anchor size			М8	M10	M12	M16
Nominal diameter of element	d	[mm]	8	10	12	16
Nominal diameter of drill bit	d ₀	[mm]	10	12	14	18
Maximum diameter of clearance hole in the fixture	df	[mm]	9	12	14	18
Effective anchorage depth	$h_{ef,min} = h_0$	[mm]	60	60	70	80
(= drill hole depth)	$h_{ef,max} = h_0$	[mm]	160	200	240	320
Minimum base material thickness	h _{min}	[mm]	h _{ef} +	- 30 mm ≥ 100	mm	h _{ef} + 2d ₀
Maximum torque moment	T _{max}		10	20	40	80
Minimum spacing	Smin	[mm]	40	50	60	80
Minimum edge distance	Cmin	[mm]	40	50	60	80

Installation equipment

Anchor size	M8	M10	M12	M16			
Rotary hammer	TE2(-A) – TE30(-A)						
	Blow out pump (h _{ef} ≤ 10·d)						
Other tools	Compressed air gun ^{b)}						
	Set of cleaning brushesc), dispenser, piston plug						

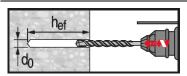
a) Compressed air gun with extension hose for all drill holes deeper than 250 mm (for M8 to M12) or deeper than 20·φ (for φ > 12 mm)

Parameters of cleaning and setting tools

	Drilling an	Drilling and cleaning						
HAS-U	Hammer drilling	Brush HIT-RB	Piston plug HIT-SZ					
	d₀ [mm]	size [mm]	size [mm]					
миништ	TU							
M8	10	10	10					
M10	12	12	12					
M12	14	14	14					
M16	18	18	18					

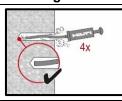
b) Automatic brushing with round brush for all drill holes deeper than 250 mm (for M8 to M12) or deeper than $20 \cdot \phi$ (for $\phi > 12$ mm)

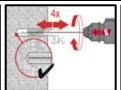
Setting instructions

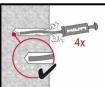

*For detailed information on installation see instruction for use given with the package of the product.

Safety regulations.

Review the Material Safety Data Sheet (MSDS) before use for proper and safe handling! Wear well-fitting protective goggles and protective gloves when working with Hilti HIT-1 / HIT-1 CE.

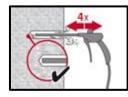

Drilling

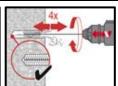


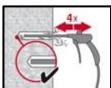

Hammer drilled hole (HD)

For dry and wet concrete only

Cleaning

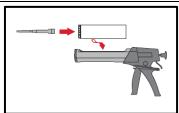


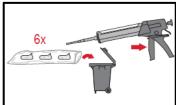




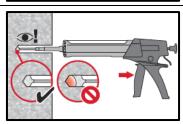
Manual cleaning with machine brushing (MCMC)

For drill diameters $d_0 \le 20$ mm and drill hole depth $h_0 \le 10$ -d.

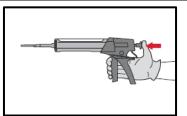


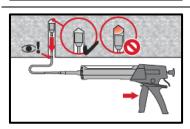


Compressed air cleaning with machine brushing (CACMB)

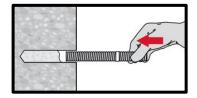

For drill diameters $d_0\, and$ all drill hole depth $h_{0.}\,$

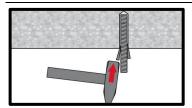
Injection system

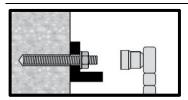



Injection system preparation

Injection method for drill hole depth (approx.2/3 full)


Depressurization of the dispenser.


Injection method for overhead application and/or installation with embedment depth $h_{ef} > 250$ mm.


Setting the element

Setting the element, observe working time "twork",

Setting element for overhead applications, observe working time " t_{work} ",

Loading the anchor: After required curing time t_{cure} the anchor can be loaded.